
It is well known that the equilibrium of a fluid contained in a planevatical layer ax chan- 
nel and heated from below becomes unstable, when the temperature gradiwa retches its 
critical value, We find pj that ~rt~a~~s~ velocity vectors of wldch are ~aIl~I to 
the ~e~era~~s of the channel, correspond to a rn~~~rn~rn vdue of Me ~~~ei~~ darner 
and are most susceptible m the instability effect. Ccltular perturbations periodic wfth 
respect to the axis of the channel, correspond to higher values of the Taylelgh number 
@ and 33 

The situation is different irm t&c case of plane borl~ral layers or channels. When we 
have a ~0~~~1 layer bard from below, we find &at the onset of ~stabi~~ is cattsed 
by ~~bati~s possessftrg a definite walleye [4& and pmbdk in the plane& the 
layer. In the case of a h~~~n~l circular cylinder, ex~r~rnen~ [5-j and calcu~~ons @I 
have shuwn that the appearance of i~~b~l~~ is also connected with cellular perturba- 
tions, 

3eIow we ~v~tiga~ how the form of ~n~ab~~~ changes tith ~~~~~~~ of t&t CMP 
wf relative to the vertical and we study the convective stability of a plane layer arbi- 
trably oriented with respect to the force of gravity, It appears that at some critical value 
a, of the angle of inclination af the plan@ of the layer to the vertical, the instability 
changes its character (transition from the plane-parallel to the cellular perturbations). 
When a % a, t then criticaI perturbations possess a finite wavelength. 

A method of small parameter b~ed’on expansion of ~r~ba~~ into power series in 
terms of a d~rn~~s~o~le~ wave number k e was used in study&g long-wave ~~at~ons* 
This pfelded spectra of ~r~bati~s and of the critical Rayleigh numbers at smaI1 h: , 
and made it possible to determine the critical angle a, * For a layer bounded by per- 
fectly heat-conducting planes, (&. = 21’. 

Lower InstabWty levels at arbitrary wave rmmbers were ~~~ga~ with help of the 
Galerkfn me&&, The baundahy value pblem fcx ~r~~ti~ ~~~it~~~ 5s rc;duced 
to a system of homogeneous linear algebra% equations for the coefficients of the stpan- 
sion, and its matrix is numerically diagonalized on the digital computer, Eigenvalues, 
i e. the critical values of the Rayleigh number were faund for various values of CC and k. 

I, ~~~~~~~~~~~~ %PUltfQDa* A plane &if&&te layer of thickness 2h &tcIined 
at afl xmgle a, to the vertical ~~i~~~~~~ heated f&m below in such a manner, that a state 
of e~lib~urn Is possible, l&u&g the eq~~b~urn the fluid is at rest. The tem~ra~e 
To and the pressure po (with respect to hydrostatfc pressure at constant density Do) are 
given by VT, = - Ay, VP, = PIlsfJ Gy WI 

w&xe y 2s the unit vertical vector directed upwards, A is the constant eq~~b~~ tem- 
pRrature gradient (A > 0 corresponds to ~a~~g &cm b&W& whiie # and @ are the 

321 
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acceleration due to 

Usual convection 

VP 

gravity and the coefficient of thermal expansion, respectively. 

equations yield equations of “neutral” perturbations 

- F+vAv+gPTy=O, vVT, = @I’, divv = 0 (1.2) 

Here v and x‘ are the coefficients of kinematic viscosity and heat conductivity, res- 

pectively. We can rewrite these equations in a dimensionless form, using h. X/h., Ah 
and po VX/$ as the units of distance, velocity, temperature and pressure, respectively. 

Then (1.2) can be replaced by dimensionless equations for 

velocity, temperature and pressure perturbations denoted, 

as before, by v, y and p 

Fig. 1 

Av -I- RTy = Vp, R = g@W / vx (1.3) 

AT = - (vy), div v = 0 (1.4) 

where the Rayleigh number R is a drmensionless parameter. 

In the following we shall consider QI-I~Y such plane per- 

turbations, for which velocity components VX and U, # 0, 
UY = 0 and all magnitudes are independent of y. In this 
case we can introduce a stream function 

v, = &j@z, v,= - o’$//dx (f-5) 

Taking curl of (1.3) to eliminate the pressure component and introducing the stream 

function, we obtain 

AAg - R (sin a’; + cos cz ‘&) = 0, AT - (sina$- -+ cos ~1%) = 0 (1.6) 

“Normal” perturbations periodic in the 2 -direction, can be written in, the form 

9 (x, 2) = cp (X) ei”*, T (5, Z) = 8 (2) ei’.’ (1.7) 

where k is the real wave number. Inserting (1.7) into (1.6) we obtain Eqs. for amplitudes 

of perturbations V(X) and B(X) 

@v - 2k2qf + k4cp = 11 (ik sin cc 0 + cos a 0’) (1.Q 

tl” - k20 = ik sin acp + cos acp’ (1.9) 

Both velocity components together with the temperature perturbation disappear on the 

boundaries of the layer (last condition corresponds to the case of perfectly conducting 

walls). Boundary conditions of (1.8) and (1.9) then become 

q2=cp’=fj=fJ when z = f 1 (1 .I01 
The problem (1. 8) to (1.10) is characteristic, yielding the critical values of the Ray- 

leigh number A (for given a and k) and the corresponding critical motions. 

2. Long wave perturbrtlonl, Critical angle, If the wave of a per- 
turbation is large when compared with the thickness of the layer, then the dimensionless 
wave number ,?z is small and the method of small parameter can be used to obtain a 
solution to our problem. 

We shall seek the amplitudes of perturbations cp and 8 and the critical Rayleigh num- 
ber R expressed as power series in terms of a small parameter (7%) 

cp = cp(O) + (ik) r$‘) + (ih.)a@) _t _ . . (2.1) 
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0 = go) + (ik) 00) + (~k)2e(2) + . . . (2‘21 

R = R(O) + k*&(z) + klR(4) + . . . g2.3) 
(since R is real,(2.3) obviously contains only even powers of Ic). Equations of consecu- 

tive approximations are 

4, 
@trv _ j.$O) cos a fj’“)’ _ 0 

- t 
fl’“‘” - CO$ @# qP = 0 (2.4) 

Fp 
WV - I$*) ~0s 8 f#‘) = R(O) sin G @‘). Of’)” - cos a ipft)’ = sin cf rpi”) (2.5) 

cp 
(2)TV _ R(O) cos &(2)’ = _ 2rpC’)” + &(“I sill a e(‘) _ &‘(“J CQCJ a tj(“) (2.6) 

eW’ - c*&cj a q)(Z)’ = - g(O) + siu cc rp(‘) and so on. 

The boundary conditions coincide, for all approximations, with (1.10). 
Zero approximation (2.4) gives critical values I?(O) and corresponding amplitudes for 

plane-parallel perturbations (k = 0). Homogeneous system (2.4) defines, together with 

boundary conditions (1, lo), two classes of solutions. Solutions belongim! to the first class 
(“odd” solutions) will have both, velocity ZJ~~) and the temperature 8(O) , appearing as 
odd functions of x , and will have the form 

(p(O) = coslr - , 1 f$“) = cos a sin yx 

cos y -zzf- Y 
(2.7) 

7 E (R(O) cos2 up P-8) 
A relation characteristic to odd solutions, leads to the following spectrum of odd insta- 

bility levels 
7=nn, R@ - _JL_. - n%P 

cosa 01 co@ a (n = 1, 2, 3 * * .) (2.9) 

The amplitudes of even solutions are 

q)(O) sin ?-x sh TX e(O) = cos a cos +r - cos TX 
+ 

chr-cbyx 

--‘--shy’ s1n r Y sin +r sh ‘r 1 (2.10) 

Here y is related to R(O) by (2.8). but in the case of even solutions the values of y 

are given by the roots of the following Eq, 

tgy = thy (~=3.927, 7.059,. . .) (2.11) 
Similarly, we find the critical levels R(O) for even perturbations 

R(O) _ -P --= (3.927)4 (7.069)* 
co.9 a COSP’ ~‘“’ (2.12) 

Odd and even levels in the spectrum of critical values of y (and hence of R”) alter- 

nate in the following manner: 

y1 = n, ys = 3.927, ys = 251, y,, = 7.069, . . . (2.13) 

Consecutive approximation equations must be used to find the corrections to the levels 
and amplitudes at small values of k . A nohhomogeneous system must be solved in each 
appro~mati~, and the condition of solvability of this system defines the corresponding 
correction to the nonperturbed critical value. 

First order amplitude corrections are given by (2.5). On fnspection of the right-hand 
sides of (2.5) we can easily see that the parity of first order corrections is opposite to 
that of the zero order amplitudes, and this is true for all odd order corrections. Even order 
amplitude corrections will, on the other hand, have the same parity as that of a zero 
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approximation. From this it follows that the solution has, as a whole, no definite parity 

when k# 0, and this can also be seen directly from the system (1.8),(1.9). 

Let us write the higher order corrections to the amplitudes of odd solutions 

(2.24) 

The values of Y are given by (2.9). The corresponding formulas for the first order 

amplitude corrections in the case of even solutions, are 

tg a -5 sin yx (p(l) = -2 ~ - _ 

1 

zshyz 1+3^(ctgr 
sin r ah ‘r + r sin 7 

cosrx + 

+ 
(2.15) 

where values of y are given by (2.11). 

Zero and first order amplitudes can be used to find the second order correction Rc2). 
This is obtained from the condition of solvability of a nonhomogeneous system (2.6) for 
the second order amplitudes 

1 

RC2) cos a s cp(O)(yO)’ /jJ: = s [2rpwr#coY + R(“)e(owo) + 
-1 -1 

4.. &(O) sill a ((p(l)fj(o) _ me)] dx (2.16) 

Insertion of previously obtained values of zero and first order amplitudes into (2.16) 

yields, for odd levels, I((“) = 3r2 
~ [I- + (6~ cth 7 - 5) tg2 a] 
cos2 a (2.17) 

The behavior of neutral curves R (k) is, for small k. defined by the sign of Rc2). If 

RcL) > 0, then the stability curve exhibits a minimum at k = 0, while when Rc2) < 0 
we have a maximum. We see from (2.17) that, for small a, R(*) is positive; it decreases 

monotonously with increasing a and at some a, it changes its sign. Critical angle a, 

is defined by the condition R 12) = 0, from which we obtain 

310 = arctg 
2 112 

6rcthr--5 
(2.18) 

The lowest odd level defines the threshold of convection. It is the fundamental level 
of the spectrum and the corresponding value of y is y = l7 (see (2.9). TherL(2.16) yields 
a, = 20”46’. 

Thus, within the interval 0 <Cz <CL, , the minimum Rayleigh number corresponds to 

plane parallel perturbations when k = 0 and is equal, in accordance with (2.9). to 

II,* = -Z.- 
co@ a 

(2.19) 

When a >a0 , then the point k = 0 corresponds to a maximum on the curve Rl (k) , 
the minimum is displaced into the region k# 0 and the corresponding critical value of 

/? is found numerically as shown in Section 3. 
The behavior of the instability curves R(k) in the region of small k for higher order 

odd levels is completely analogous to the behavior of the fundamental level which we 
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have discussed above. All critical angles are obtained from (2.18) by the substitution 

y = 7Zri. Clearly, the value of a, decreases with increasing n . Putting y = 2l7 in (2.;18) 

we find, for the second odd level (third level A3 in the whole spectrum), a, = 13”53 . 
The behavior of even instablilty levels is established by inserting the values of zero 

and first order approximations given for the even amplitudes by (2.10) and (2.15). into 
(2.16). The resulting formula for Hi’ analogous to (2.17) is very unwieldy and is, there- 

fore, not given here. However we can deduce from it, that the second order correction 

to Ki2) is positive for all Ct . Thus, for all CI , the neutral curves R(k) of even levels have 

a minimum at k= 0, and the corresponding minimum values ofRq, are given by (2.12). 

It seems, that the method of small parameter leaves the question of uniqueness of the 

minimum at k= 0, open. To settle it, we must consider the stability under perturbations 

with a finite k ( see Section 3). Nevertheless, we can already infer that a minimum 

should exist for finite k , in any case, for angles near to 90’. Indeed, as U* 90”. we ob- 
tain the Rayleigh problem of stability of a horizontal layer in which, as we know, mini- 

mum critical values of the Rayleigh number correspond at all levels of instability, to 

finite wavelengths. 

3. Numerlcrl ra8ult8. The complete system (1.8) and (1.9) must be used to 

obtain the spectrum of instability at finite values of the wave number k . A general 
solution of a linear system with constant coefficients (1.8) and (1.9) can be written out, 

but the resulting characteristic equation from which critical Rayleigh numbers must be 
obtained, is very complex. Therefore an approximate method due to Galerkin is found 

to be more rewarding. To use it, we shall represent the amplitudes of the stream function 
and temperature in the form 

‘P = ~o’Po + WI + aacpz + . . . , 8 = b&l, + b,8, + bzez + . . . (3.1) 

where the eigenfunctions of the following boundary value problems 

(piIV - 2kQ” + k4cpi zz -pi (vi” _ kqp,), ‘pi = qi’ = 0 when % = + 1 (3.2) 

&” - k3, = - v& 81 = 0 when L = f 1 (3.3) 

play the part of the base functions cpi and 8i . 

They are given in their explicit form together with relations for the eigen numbers in 
fl], where the above base was used in investigating the spectrum of normal perturbations 

of a steady convective motion. 

Inserting (3.1) into (1.8) and (1.9). multiplying first of the resulting expressions by cpl 
and the second one by & and integrating with respect to x from - 1 to +l , we obtain 

an infinite linear homogeneous system of equations of the Galerkin method for the coef- 
ficients a, and bi . 

Equating the determinant of this system to zero, we obtain a characteristic equation 
defining the critical values of R as functions of u and k. We can write this equation as 

where (a),(b),(c) and (d) are matrices whose general terms are given by 

%nn =---‘I 6 m mn, b mn = ik sin a C,, + cos aD,, 

%n = ik sin UC,,,,, - cosaD,,, d,, = ‘/zv,,, 6,, 

(3.4) 

(3.5) 
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Here 6,, is a Kronecker delta, while matrix elements c,, , D,,,, and _,& have values 

depending on signs of the indices 

C mn = (-I$’ m I,, (when m and n are even) 

C m* = (-.l)ll*(m-‘) j,,, (when m and n are odd) 

C -10 tT1.n (when m and n are of opposite signs) 

D ,,,,, = (-i)“2(m+a) f,, k cth k (when m is even an8 n is odd) 

D mR = (--l)“2(‘n+1) j,,, k tn k (when m is odd and n is even) 

D =o mn (when ITl and n are of the same sign) 

2 
‘77, = ,(,> k2) (urn - k2 - k th k + kz th2 k) (when m is even) 

Pm2 
I, = z(p,,, _k2) (hi - 82 - k cth k + kz cthz k) (when 7Tl is odd) 

(35) 

First eight terms were retained in each expansion of (3.1). Under these conditions the 

characteristic Eq.(3.4) , the left-hand side of which was a 16th order determinant, yielded 
eight levels of the spectrum of critical values of 3. However only the lowest levels were 
found to be sufficiently accurate. 

#I aj 
0 7 I 

Fig. 2 Fig. 3 

Orthogonal step method [8] was used to diagonalize the matrix. Actual computation 
was performed on the “Aragats” digital computer (here thanks are due to S. Keller and 
A, Koblov for help in performing the computations). 

Let us now discuss the obtained results. 
Fig. 2 gives the neutral curves fil (k) of the fundamental instability level for various 

angles of inclination of the layer towards the vertical. When 0 ~CL ~21”. the critical 
values of RL increase monotonously with k. and a minimum corresponds to k = 0. When 
a > 21’, then in accordance with Section 2 the minimum is displaced into the region 
k# 0. Fig. 3a ,gives the minimum value Al. defining the limit of stability relative to 
the angle of inclination a. We see from it that the stability reaches its maximum in 
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the region of CI = 35”. When a = 90” (plane horizontal layer heated from below ( ‘) , 
Al,= 106.8 and the corresponding wave num- 

ber kl, = 1.56 . 
An interesting fact emerges from our dis- 

cussion, namely, that the critical number J?I, 
is weakly dependent on the angle of inclina- 

tion. However, during the change of inclina- 

tion the instability alters its character; when 

x 

I 2 .T 4 

Fig. 4 Fig. 5 

CY, < 21”) the instability is caused by plane parallel motions (k = 0). while when cx > 21’, 
the instability appears in the form of Benard cells whose wave number k* increases mo- 
notonously with CL (Fig. 3b). 

We shall now investigate the behavior of k* near the critical angle CQ,, using (2.17). 

With (2.18) taken into account, we can write the second order correction R@) as 

RC2j = 37*(6’r cth r - 5) 
2 cos2 a 

(tga a0 - tgz a) (3.7) 

When a is nearly equal to a,, we have 

RC2) = a (a0 - a) 

Expansion (2.3) of the critical Rayleigh number up to and including k4. is 
R = R(O) - a (a - ao) ka + Rc4)ka (a > 0, Rc4) > 0) 

Minimizing J? in k we now find that 

(3.8) 

(3.9) 

k, = & (a - ao))"' (3.10) 

i.e. k* increases as a square root wherra 3 q. 
Next we shall consider the second instability level Ra . The neutral curves R2 (k) 

are given, for various a, in Fig. 4. In accordance with the results obtained by the method 
of small parameter (Section 2). a minimum now exists on stability curves at the point 

3 It should be noted that we have used half of the width of the layer in determining 
the Ra leigh number. If total width and temperature difference are used, then the value 
quote d above should be multiplied by 16, and this yields RI: = 1709 which is in good 
agreement with [4]. 
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k = 0 for all values of a . The corresponding minimum value Aa, varies with a accord- 
ing to (2.12) (first root) and is shown in Fig. 5 by the curve 1. With increasing Ct , a point 

of inflection appears on stability curves, and is followed by a second minimum at c1= 43” 

7 2 $ 

Fig. 6 

I I I 
f? 2 4 6 

Fig. 7 

and k= 2.0. When a increases further, this minimum shifts towards the higher wave 

numbe.,, Fig. 5 curve 2 shows the dependence of the corresponding minimum critical 

number &, on CX . The critical wave number k, increases monotonously along the curve 

2. from 2.0 at Cl,= 43’ to 2.7 at a= 90”. The change of the instability character (tran- 

sition from plane parallel to the cellular motion) takes place at Ct=63” at the point of 
intersection of the curves I and 2, where k, changes discontinuously from zero to some 

finite value. 
In the limiting case when it = 90”. A,,= 1102 (second level of the Rayleigh instability 

spectrum in a horizontal layer, seef4] ). 

The behavior of the upper levels of instability is more complex. The neutral curves 

R(k) have several extrema; their number depends on the angle and increases with the 

index of the level. In the limit when a = 90”. higher levels of the Rayleigh spectrum are 

obtained, Figs. 6 and 7 give the neutral curvesli(k) for the third and fourth levels. 
In conclusion we note that the change of the character of the instabili~ during the 

variation of inclination is, apparently, typical for long channels of arbitrary cross section. 
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